Multiple Zone Stimulation of EGS Wells Ì Key to Reservoir Optimization

Geothermal Energy Utilization Associated with Oil and Gas Development

SMU June 13-15, 2011

Susan Petty, Daniel Bour, Yini Nordin, Laura Nofziger i AltaRock Energy Inc.

Outline

- Introduction Ì Geothermal & EGS Power
- EGS Lessons Learned
- Current Stimulation
 Technology
- Reservoir
 Optimization

- Temporary Diverters
 Benefits
 Design
 Application
- GETEM Modeling
 Results
- Description of Operations
- Outcome & Conclusions

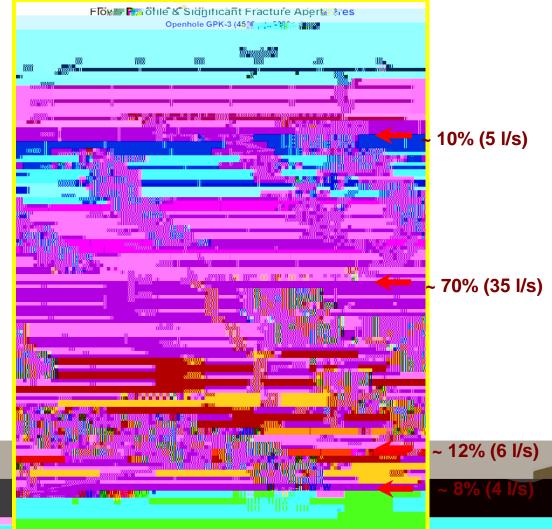
Heat Stored in Rock

1115

AltaRock Confidential 5

Worldwide EGS Lessons Learned

Project	Timeline	Deformation Mode on Fractures	Thermal Output (MWe equiv)	Problems encountered
Fenton Hill				


Worldwide EGS Lessons Learned

- First well needs to be drilled and stimulated in order to design the entire system
- Stimulation is through shearing of pre-existing fractures instead of creating new tensile fractures
- High flow rates with long path length are needed
- Need technology for multiple zone stimulation
 We currently do not have reliable open-hole packer for zonal isolation

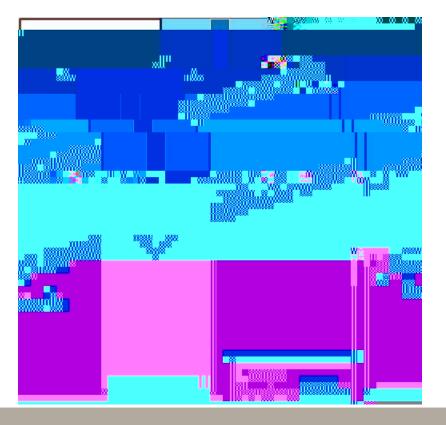
Current Stimulation Technology

- Inject fluid from the surface
- Most permeable zone in well takes fluid and is stimulated
- Remaining zones only take limited amounts of fluid.
- Increasing flow by increasing injection pressure risks induced seismicity

Reservoir Optimization

Single Fracture Network

Limitations of Single Fracture


- Flow through a single stimulated fracture network provides minimial heat exchange area
- Flow rates are then limited by the maximum injection pressure which will extend fractures
 - Increase the rate of cooling at the production well

Reservoir Optimization

Benefits of Multiple Fractures

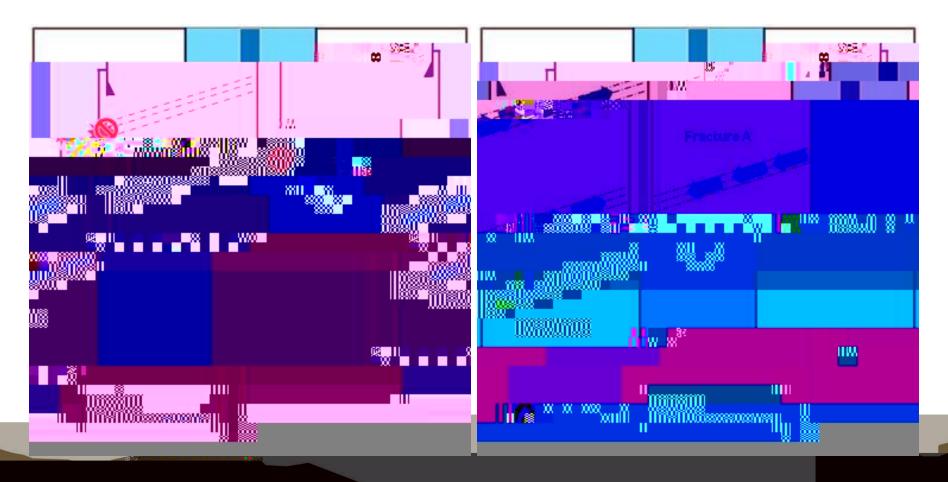
- Multiple fractures allow for flow through two or more fracture networks
- More rock heat exchange area is contacted
- Pressure drop through system is reduced allowing higher flow rates
- Additional flow will allow for greater production on a per well basis

Multiple Fracture Network

GETEM Modeling Results

- Inputs
 - 30 kg/sec base flow 4 km depth well
- Results
 - Flash system had 40% reduction in power cost Binary system had 50% reduction in power cost

	Flash/Binary	Temperature (°C)	Improvement	Cost of Power 2010 (cent/kw)
-				


12

AltaRock Confidential

Temporary Diverters

Diverter Sealing Zone

Degraded Diverter

AltaRock Proprietary Temporary Diverters

Design

- Particle size distribution of material that will allow for packing and sealing of fracture
- Remain in place and withstand differential pressure during 2nd stimulation
- Degrade to non-damaging products after stimulation as well heats back up
- Require instruments in hole during treatment to monitor and verify that diversion has occurred

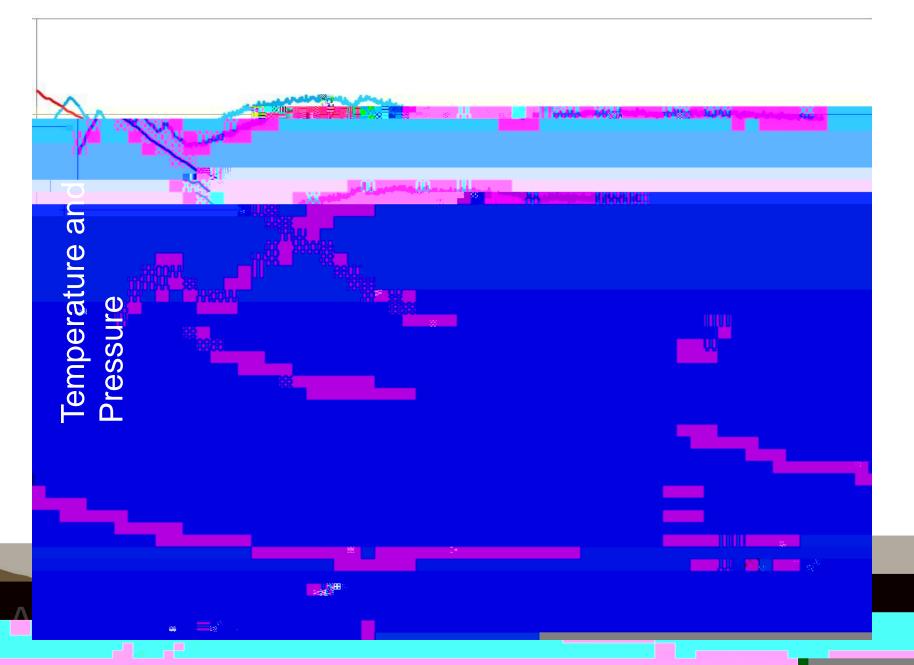
Benefits

- Increased production reduces cost of power production
- No Rig required during treatment
 - Major cost Savings
 - Reduce Operational risk
 - Create fractures in succession without moving packer and waiting on rig
- Can be used even when slotted liner is in place
 - Cannot use mechanical isolation like packers in well with slotted liner

Temperature Modeling Thermal Cooling from Injection 1 10 bpm

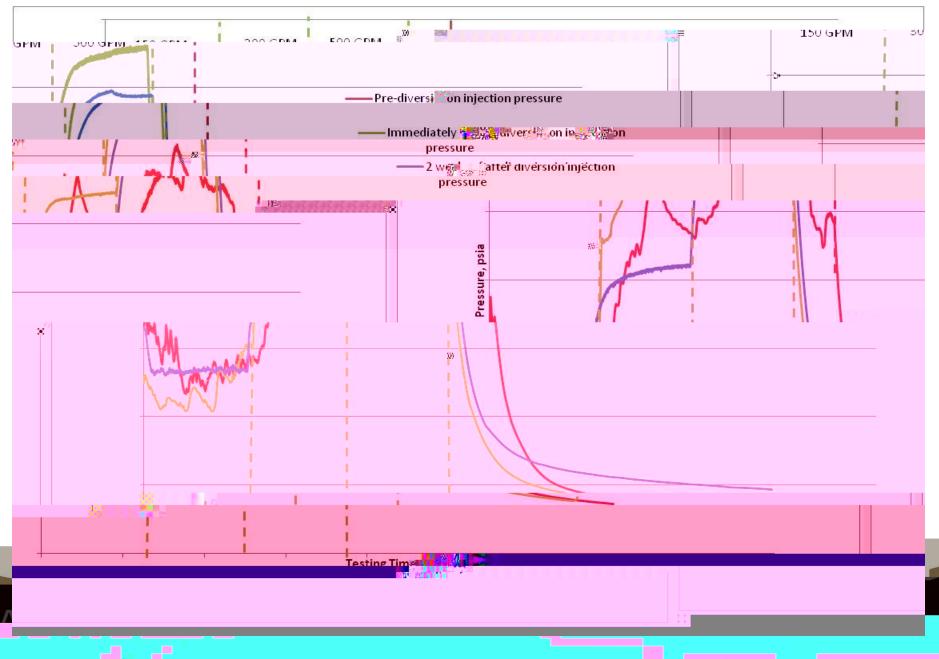
Temperatures vs. Time - Injection - Annulus

600.0														
560.0														
F 20 0														
520.0														
480.0														
440.0														
400.0														
360.0				•										<u></u>
320.0														
280.0														
240.0														
200.0														
160.0														
120.0														
120.0				-										
80.0	i 0.075	0.150 0	.225 0.3	i 300 0.3	375 0.4	50 0.5	25 0 6	0.6	675 <u>0.7</u>	<mark>/50 0.</mark> 8	325 0.9	0.9	975 1 (1.12
0.000	0.013	0.100		0.0	0.4		Time (davs)		0.1	0.0	0.0	0.0	1.0	1.12



Diverter Test No.1


- Injected water into well prior to the diverter test
- Multiple rates of 150, 300, and 500 gpm
- Measured temperature at bottom of hole

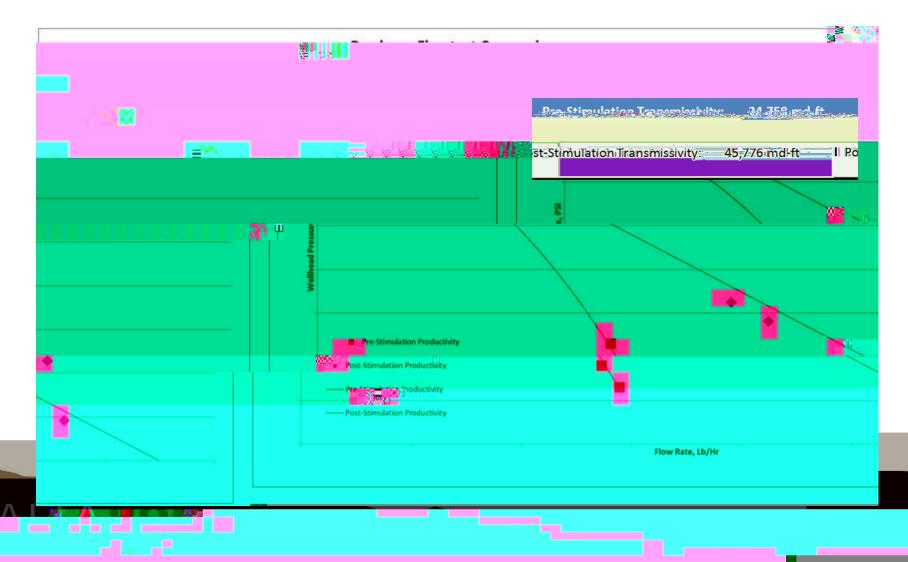

Diverter Test No.1 T & P vs. Time Monitomtted@500

Diverter Test Temperature vs. Depth Monitoring

Injection Pressure Comparison


Outcomes & Conclusions Ì Test No.1

- The first field trial of AltaRock Proprietary Diverter successful
- Highly permeable fractures temporarily sealed
- The presence of a slotted liner with $~~\ddot{\rm l}~$ slots did not pose a problem
- Injection profile in well could be modified temporarily
- Fluid could be pushed deeper into the wellbore
- Finally, transmissivity calculations (kh) before and after the test imply full degradation of the diverter material ì value held steady at 55,000 md-ft.



Tracer Test Results ì Test No.2

•

Flow Test Results - Test No.2

Outcomes & Conclusions Ì Test No.2

- Successful diversion and stimulation (tracer tests)
- Improved long term production
- Improved permeability due to stimulation (Transmissivity)
- Enhanced production from deeper interval

Conclusions

- AltaRock Proprietary Chemical Diverters have potential to greatly reduce the cost of EGS power and to enhance production of hydrothermal production wells
 - Increase power production on a per well basis
 - GETEM modeling indicates up to 50% or more reduction in power costs
- Field tests provide support of concept of using chemical diverters to temporarily divert flow in actual wells

Even with slotted liners already in place

AltaRock Confidential

Questions?

