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Chapter 1

INTRODUCTION

In this thesis we focus on the simplest possible turbulence in three dimensional

incompressible fluid. The whole space is filled with fluid so there are no confining

walls and corresponding boundary layers. Moveover, the turbulence is homogeneous,

isotropic, and driven into statistical equilibrium by a strong steady large scale forc-

ing. This results in a high Reynolds number. In principle, we are interested in the

limit of infinite Reynolds number. This limit is particularly interesting because of

the behavior of the dissipation - namely, there is nonzero dissipation in the limit of

vanishing viscosity. Therefore, the Euler equations do not apply as they have no dis-

sipation term. The dynamics and statistics at scales much smaller than the forcing

scale are believed to be universal, e.g. [7]. That is, independent of the particulars of

the forcing. For this reason, the small scales (small relative to the forcing scale) are

commonly referred to as the universal equilibrium range. In turn, this range divides

into two parts: the dissipation range and the inertial range (or subrange). In the in-

ertial range, the scales are large enough for the dissipation to be negligible. In other

words, inertial forces alone rule this area. Our interest is the statistics of turbulence

in the inertial range. The classical view is that it should have universal properties.

There is much debate about what those universal properties might be. Some

even argue against universality altogether. An old idea dating back to Kolmogorov

1941 [11] suggests scale invariance of the statistics in the inertial range. In other

words, the inertial range might exhibit self-similarity. The governing equations -

Navier Stokes equations in Fourier space - certainly suggest so because the viscous
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is the projection operator that removes the pressure term. This is the traditional

starting point for the study of homogeneous isotropic turbulence [3, 10, 13] which

always develops when the forcing is strong enough to give a high Reynolds number.

Homogeneity and isotropy refers to independence of location and orientation in

space. The first to utilize this type of turbulence was G.I. Taylor [23]. With these











1.4. Methods for Obtaining Data from the Inertial Range



they do not admit for power law scaling in the inertial range. Chapter ?? investigates

pdf’s constructed from given scaling exponents. In particular, we look at the log

Poisson model of anomalous scaling [21]. We find that the pdf has a number of strange

and undesirable features. Chapter ?? presents an analytic example of a pdf that is

self-similar yet satisfies the power law requirement with nonlinear exponents. This

provides a specific example that anomalous scaling may be expressed through self-

similarity; an idea that was believed to have sunk with K41. This is a specific example

from the new theory proposed in [14]. Chapter ?? introduces the shell models which

will be used to generate inertial range data for our analysis in subsequent chapters.

Shell models are severe truncations of the Navier Stokes equations in Fourier space.

We chose two specific models; GOY and Sabra, both are well know
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Table 2.1. Measurements for scaling individual radial profiles. Shell 12 is selected as
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system before numerical problems arise. Thus, we create Run 8 and Run 9. Run 10 is
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